Birzeit University Mathematics Department Math 337

QI:) 12 points disprove each of the following

1) If G is a group and $H=\left\{x^{2}: x \in G\right\}$, then H is a subgroup of G
A_{4} has 9 square elements that do not form a subgroup
or
In $S_{3}, H=\{\varepsilon,(12),(23),(13)\}$ which is not a subgroup
2) S_{n} is a cyclic group for $n>2$
S_{n} is not an abelian group for $n>2$
$Z\left(S_{n}\right)=\{\epsilon\}$ for $n \geq 3$.
QII: 88) Do the following
3) Let G be an abelian group and $H=\left\{x^{2}: x \in G\right\}$. Show that H is a subgroup of G
see notes
First $H \neq \phi$ since $e=e^{2} \in H$
Let $a, b \in H$ so there exist $x, y \in G$ such that $a=x^{2}, b=y^{2}$ and so $a b^{-1}=x^{2} y^{-2}=$ $\left(x y^{-1}\right)^{2} \in H$
By one step test $H \leq G$
Or use two step
4) If G is a group and H a subgroup of $G, x \in G$ and $x^{-1} H x=\left\{x^{-1} h x: h \in H\right\}$. Show that $x^{-1} H x$ is a subgroup of G
First $x H x^{-1} \neq \phi$ since $e=x e x^{-1} \in x H x^{-1}$
Let $a, b \in x H x^{-1}$ so there exist $h_{1}, h_{2} \in H$ such that $a=x h_{1} x^{-1}, b=x h_{2} x^{-1}$ and so $a b=x h_{1} x^{-1} x h_{2} x^{-1}=x h_{1} x h_{2} x^{-1} \in x H x^{-1}$ since, $h_{1} h_{2} \in H$ since $H \leq G$. Also if $a=x h x^{-1} \in x H x^{-1}$ then $a^{-1}=x h^{-1} x^{-1} \in x H x^{-1}$
By two step test $x H x^{-1} \leq G$
5) Find all elements of order 10 in Z_{40}
$1^{k}=k$ such that $\operatorname{gcd}(10, k)=1$
6) Show that A_{n} is a subgroup of S_{n} see notes
7) Let G be a group and let $a, b \in G, a b=b a$ and the orders of a, b are relatively prime. Prove that $|a b|=|a||b|$.
Show first if $(|a|,|b|)=1$ then $\langle a\rangle \bigcap\langle b\rangle=\{e\}$.
Let $(|a|,|b|)=1$ and $x \in<a>\bigcap$ then $|x|$ divides both $|a|,|b|$ and since $(|a|,|b|)=1$. So $|x|=1$ and so $x=e$
Now, let $|a|=m,|b|=n,|a b|=k$, so $(a b)^{m n}=a^{m n} b^{m n}=e$ and so $|a b| \leq m n$. Also, $|a b|=k$ implies $(a b)^{k}=e$ and so $a^{k} b^{k}=e$. So $a^{k}=b^{-k} \in<a>\bigcap=\{e\}$ and so $a^{k}=b^{-k}=e$, and so both m, n divides k, and so $m n \leq k$
8) Let G be a group such that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$. Show that G is abelian.

Let $a, b \in G$ then , $(a b)^{2}=a b a b=a^{2} b^{2}$. By cancelation laws we get $b a=a b$. So G is abelian.
7) Show that $Z\left(S_{n}\right)=\{\epsilon\}$ for $n \geq 3$.

Let x, y be distinct and let $\alpha \in S_{n}$ such that $\alpha(x)=y$, if $\alpha(y)=x$, choose $\beta \in S_{n}$ such that $\beta(x)=y, \beta(y)=z \neq x$ and if $\alpha(y)=z \neq x$ then choose $\beta(x y)$
8) Find all generators of Z_{30}
generators are $1^{k}=k$ such that $\operatorname{gcd}(30, k)=1$
9) If G is a group and $a \in G$ of order n and k divides n then $\left|a^{k}\right|=\frac{n}{k}$ see notes
10) Let G be a group, $a, b \in G$. Prove that $\left|a b a^{-1}\right|=|b|$.

Let $\left|a b a^{-1}\right|=n,|b|=m$. Show $m=n$
$\left|a b a^{-1}\right|=n$, so $\left(a b a^{-1}\right)^{n}=e$ and so $a b^{n} a^{-1}=e$ and so $b^{n}=a^{-1} a=e$ and $|b|=m \leq n$.
Also $|b|=m$ so $\left(a b a^{-1}\right)^{m}=a b^{m} a^{-1}=a e a^{-1}=e$ and so $\left|a b a^{-1}\right|=n \leq m$. So $m=n$
11) Let $\alpha=(1245)(23567)(1345)=(352)(467)$. Find $|\alpha|=\operatorname{gcd}(3,3)=3$

