Birzeit University Mathematics Department Math 337

Test1

First Semester 2021/2022

QI:) 12 points disprove each of the following

1) If G is a group and $H = \{x^2 : x \in G\}$, then H is a subgroup of G A₄ has 9 square elements that do not form a subgroup or

In S_3 , $H = \{\varepsilon, (12), (23), (13)\}$ which is not a subgroup

2) S_n is a cyclic group for n > 2

 S_n is not an abelian group for n > 2

 $Z(S_n) = \{\epsilon\}$ for $n \ge 3$.

- QII: 88) Do the following
- 1) Let G be an abelian group and $H = \{x^2 : x \in G\}$. Show that H is a subgroup of G see notes

First $H \neq \phi$ since $e = e^2 \in H$

Let $a, b \in H$ so there exist $x, y \in G$ such that $a = x^2, b = y^2$ and so $ab^{-1} = x^2y^{-2} = (xy^{-1})^2 \in H$

By one step test $H \leq G$

Or use two step

2) If G is a group and H a subgroup of G, $x \in G$ and $x^{-1}Hx = \{x^{-1}hx : h \in H\}$. Show that $x^{-1}Hx$ is a subgroup of G

First $xHx^{-1} \neq \phi$ since $e = xex^{-1} \in xHx^{-1}$

Let $a, b \in xHx^{-1}$ so there exist $h_1, h_2 \in H$ such that $a = xh_1x^{-1}, b = xh_2x^{-1}$ and so $ab = xh_1x^{-1}xh_2x^{-1} = xh_1xh_2x^{-1} \in xHx^{-1}$ since, $h_1h_2 \in H$ since $H \leq G$. Also if $a = xhx^{-1} \in xHx^{-1}$ then $a^{-1} = xh^{-1}x^{-1} \in xHx^{-1}$

By two step test $xHx^{-1} \leq G$

3) Find all elements of order 10 in Z_{40}

 $1^{k} = k$ such that gcd(10, k) = 1

- 4) Show that A_n is a subgroup of S_n see notes
- 5) Let G be a group and let $a, b \in G, ab = ba$ and the orders of a, b are relatively prime. Prove that |ab| = |a||b|.

Show first if (|a|, |b|) = 1 then $\langle a \rangle \bigcap \langle b \rangle = \{e\}.$

Let (|a|, |b|) = 1 and $x \in \langle a \rangle \bigcap \langle b \rangle$ then |x| divides both |a|, |b| and since (|a|, |b|) = 1. So |x| = 1 and so x = e

Now, let |a| = m, |b| = n, |ab| = k, so $(ab)^{mn} = a^{mn}b^{mn} = e$ and so $|ab| \le mn$. Also, |ab| = k implies $(ab)^k = e$ and so $a^k b^k = e$. So $a^k = b^{-k} \in \langle a \rangle \bigcap \langle b \rangle = \{e\}$ and so $a^k = b^{-k} = e$, and so both m, n divides k, and so $mn \le k$

6) Let G be a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$. Show that G is abelian.

Let $a, b \in G$ then , $(ab)^2 = abab = a^2b^2$. By cancelation laws we get ba = ab. So G is abelian.

7) Show that $Z(S_n) = \{\epsilon\}$ for $n \ge 3$.

Let x, y be distinct and let $\alpha \in S_n$ such that $\alpha(x) = y$, if $\alpha(y) = x$, choose $\beta \in S_n$ such that $\beta(x) = y, \beta(y) = z \neq x$ and if $\alpha(y) = z \neq x$ then choose $\beta(xy)$

- 8) Find all generators of Z_{30} generators are $1^k = k$ such that qcd(30, k) = 1
- 9) If G is a group and $a \in G$ of order n and k divides n then $|a^k| = \frac{n}{k}$ see notes
- **10)** Let *G* be a group, $a, b \in G$. Prove that $|aba^{-1}| = |b|$. Let $|aba^{-1}| = n, |b| = m$. Show m = n $|aba^{-1}| = n$, so $(aba^{-1})^n = e$ and so $ab^n a^{-1} = e$ and so $b^n = a^{-1}a = e$ and $|b| = m \le n$. Also |b| = m so $(aba^{-1})^m = ab^m a^{-1} = aea^{-1} = e$ and so $|aba^{-1}| = n \le m$. So m = n
- **11)** Let $\alpha = (1245)(23567)(1345) = (352)(467)$. Find $|\alpha| = gcd(3,3) = 3$